理论上堆芯工作温度高就意味着散热压力更小,系统重量更轻,效率也会高一些,但随之带来的就是设计难度上升,危险度也会增加。
大名鼎鼎的切尔诺贝利核电站事故,就是因为堆芯的温度过高导致,要不是救援人员用人命抢救,熔毁后就会酿成更大的威胁。
阿美与联盟之前研制的核发动机体积和重量较大就是为了可靠性降低堆芯温度,使得散热系统必须做的很大很复杂。
如果是在一级使用大部分时间在大气层内工作还好,有空气能辅助散热,重量还能接受,要是在真空才困难,高功率反应堆的热能真让人不知道如何处理。
但对于程南开来说恰恰相反,NAPE能在走SFR路线的同时维持整个系统的低质量,靠的就是1700度以上的超高堆芯温度。
而现在国际上对钠冷快中子反应堆发起冲锋的各大研究机构,也不过才设想750到950度的堆芯工作温度,1700度已经是后期成熟后的展望了。
NAPE的反应堆热量也不会像地面发电一样散去,而是引导至发动机部分加热工质使其电离,将散热系统的压力降低到最小。
正是这套电离环节才使得NAPE的效率直线提升,并且大幅度缩减体积和重量,让3。6吨的系统包含了三种工作方式,还有一个百万千瓦级SFR反应堆。
毫不客气的说,六台NAPE同时输出的功率已经能抵得上大型核电站,这也是少数知道NAPE项目的官方人员不看好的原因:太特么恐怖了!
当然,NEPE计算的是总功率不是发电功率,涵盖了发动机整体各个环节,也不能做到完全发电,但依然是跨时代的存在。
王禄自然也知道NAPE项目,自己也做过计算,但他觉得如果是自己带人搞NAPE,重量至少在10吨以上,这还是忽略了很多问题得到的。
后生可畏,后生可畏啊!
程南开还不知道自己已经被打上了天才科学家的标签,此时他的心情更倾向于一种解脱。
在青山基地彻底投入使用之前,他做的最多的就是理论工作,然而理论设计已经有系统巨细无比的设计,实在没有什么值得钻研修改的。
NAPE本身就是那个世界线在SSTO动力上的极致成就,原始设计已经到了任何修改都多余的地步,只需要按部就班地制造就好了。
至于其他的探测器核电池,航天器核反应堆都是些小东西,过去的几个月一直处于赋闲状态。
“王老,194所除了船舶核动力,有研究过空间核推进技术吗?”
王禄摇摇头:
“在以往我们的概念中,核热发动机的设计与原理比较简单,与主要发电用的反应堆区别很大,而且空间核热推进的效费比不算高,所以……至少194所没有。
但是NAPE很先进,液态金属反应堆在船舶上应用也是前沿技术,就是安全性方面不如传统压水堆,不过确实很省空间。
小程,你没有早到国内工作,是我们的巨大损失。”
程南开:“……”
他默默移开视线看向远处和一群领导站在一起的林炬,心想自己要是早早归国那水平也就在大学教书,还是系统厉害啊!
……
“ES-6:电离-气尖联合推进试验,第十一次试车!”