原本就不怎么喧闹的教室,忽然又静上了几分。
对啊。
不知不觉中,徐云已经推导出了合外力和质量!
如果再推导出加速度。。。。。。
那么不就可以以牛二的形式,表达出波在经典体系下的方程了吗?
想到这里。
几位大老纷纷拿出纸笔,尝试性的计算起了最后的加速度。
说起加速度,首先就要说说它的概念:
这个是用来衡量速度变化快慢的量。
加速度嘛,肯定是速度加得越快,加速度的值就越大。
比如我们经常可以听到的“我要加速啦”等等。
假如一辆车第1秒的速度是2ms,第2秒的速度是4ms。
那么它的加速度就是用速度的差(4-2=2)除以时间差(2-1=1),结果就是2ms2。
再来回想一下,一辆车的速度是怎么求出来的?
当然是用距离的差来除以时间差得出的数值。
比如一辆车第1秒钟距离20米,第2秒钟距离50米。
那么它的速度就是用距离的差(50-20=30)除以时间差(2-1=1),结果就是30ms。
不知道大家从这两个例子里发现了什么没有?
没错!
用距离的差除以时间差就得到了速度,再用速度的差除以时间差就得到了加速度,这两个过程都是除以时间差。
那么。。。。。。
如果把这两个过程合到一块呢?
那是不是就可以说:
距离的差除以一次时间差,再除以一次时间差就可以得到加速度?
当然了。
这只是一种思路,严格意义上来说,这样表述并不是很准确,但是可以很方便的让大家理解这个思想。
如果把距离看作关于时间的函数,那么对这个函数求一次导数:
就是上面的距离差除以时间差,只不过趋于无穷小,就得到了速度的函数、
对速度的函数再求一次导数,就得到了加速度的表示。