如果在身边,估计要被宋瑶捶了。
和宋瑶聊了10分钟,见米娅已经在台上调试麦克风,许青舟放下手机,翻开笔记本。
“先生们,女士们,早上好。”
打完招呼,米娅就直接进入正题:“首先,我将向大家说明整体的架构,我们都知道,本底问题是双光子道分析的主要障碍。”
米娅的声音在报告厅回荡,许青舟对美国组的方案也有了一个大概的了解,从框架上来看,对方使用的方法和他们有不少重合的地方。
就比如最初部分,因为本底的产率往往远高于信号产率,所以大家开始都需要对事件进行精确地选择。
接着,再使用相应的数据驱动方法来评估本底产生的水平。
而在本底问题上,都选择了蒙特卡洛模拟,用模拟工具GEANT4生成大量的模拟数据。
当然,重合的地方有,两个小组在物理工具和数学工具上的选择不同。
就比如在建立模型时使用的信号模型搭建方式完全不一样,他们这边使用的是高斯函数,美国组使用的是布雷特-维格纳函数。
最大的区别在于,美国组在抑制本底事件时使用了重整化群理论,夏国组利用的是量子力学的叠加原理和概率幅相加规则。
“重整化群理论。”
许青舟眯着眼,没有继续听下去,而是提起笔,埋头计算。
重整化群是一个在不同长度标度下考察物理系统变化的数学工具,物理作用,即扣除背景,用截断技巧,把积分上限取为某个有限值,被用于处理实验数据中的微扰发散问题和提高测量结果的精度。
除了量子场论和粒子物理学,这个理论现在更多地被用在凝聚态物理学里边。
许青舟重点关注这个的原因很简单:就目前而言,重整化群理论其实是不完善的。
好像在七八年过后才被修正好。
如果使用这个理论,很有可能导致Higgs粒子的质量随着能标的变化而变化。
这就会导致在不同能标下得到的Higgs粒子性质存在差异。
重整化群方程是:
【[μμ+β]ΓR=0】
正当许青舟沉在计算中的时候,隔壁杨院士等人的表情有些凝重,他们的心情那才叫坐过山车,昨晚还在高兴方案很稳。
谁知道今天就直转急下。
美国组的方案非常完备,即便他们以十分挑剔的目光来看,目前都找不出什么太大的问题。
和他们的方案对比,基本可以五五开。
方案完成度相似的情况下,夏国组的胜算并不大。毕竟,美国和欧洲的各国的关系就不用说了。
60分钟时间。
米娅的方案报告会结束,环视一圈,问道:“各位有没有什么需要补充的?”
会议室中大家小声地议论,但包括前面的CMS的专家都在缓缓摇头,说了个“完美”。