事实上,可以说布丁过程周围环境的毒性与切尔诺贝利附近的毒性相当。
这听起来可能有些过分,但在这些工厂工作的水坑工是巨大的男人,身体健康,精神煦腴,酣畅淋漓,因为搅拌铁水需要非常高的强度,但这些2十出头的绑带工人在开始在这些水坑炉工作后平均只能活3到5年。
这是因为他们每天都吸入大量的有毒气体,如2氧化碳、1氧化碳和2氧化硫,这摧毁了他们的肺部。
这就是贝瑟工艺的用武之地,它本身并不制造熟铁,而是制造钢,也称为低碳钢。碳含量在0。02至0。2%之间。
这也是亚历山大建造的。
亚历山大的贝瑟转炉直接从高炉中注入铁水,使用倾斜的通道,顶部被木棚覆盖以防止雨雪,同时也允许工人进入它,以便他们能够快速解决铁在流动过程中固化等问题。
虽然这从来都不是太大的问题,因为从炉子到转化炉的流动距离非常短,生铁中4%至4。5%的碳有助于降低熔化温度并使铁水非常流动。
他将贝瑟转炉设计成传统形状,作为1个梨形炉,高约6米,直径约3米,由混凝土制成,内衬粘土砖以抵抗热量。
结构底部有许多小气孔,允许热风空气通过两个由强壮的人手动操作的巨型鼓风机进入炉中。
使用人体肌肉的原因是因为没有空间建造水车和伴随的渡槽。
1旦铁水进入转炉,就会使用起重机添加碎石灰石以去除磷。
这1步至关重要,因为即使小到0。04%的含量也会增加钢在低温下变冷短的趋势,即在低温下变脆,使剑等武器在室温下更弱。
1旦贝瑟转化了这两种成分,富含氧气的热连续空气将被泵入混合物中,这会将生铁中存在的杂质(如硅酸锰和硅)氧化成各自的氧化物,并在铁上形成1层薄薄的炉渣。
挥发性更强的氧化物,如由碳形成的1氧化碳,会以气体的形式排出炉外,气体会在转炉口燃烧蓝色火焰。
在这1点上,随着蓝色火焰熄灭,标志着该特定反应的结束,理论上应该将铁骰子,碳和锰的测量混合物添加到其中。
之所以需要添加铁和碳,是因为贝瑟工艺会通过热空气从铁中喷射出过多的碳,因此需要添加1些碳。
这是因为正是碳赋予了铁强度,没有它,纯铁将是1种非常柔软、脆弱的金属,可以徒手弯曲,因此毫无用处。
亚历山大会在最后添加1些熔融的生铁来实现这1目标。
但是,虽然这很容易添加,但关键的锰却不能。
添加锰对于制造钢铁至关重要,因为它与钢水中剩余的氧气反应形成氧化物,以炉渣的形式分离。
不幸的是,对于亚历山大来说,他无法找到锰,锰看起来与铁矿石非常相似,但非常脆。
这意味着他的钢1旦冷却,就会有微小的气泡空隙,包括金属的强度并使其更脆。
当然,这并不像人们想象的那么大。
只有当人们开始制造摩天大楼和远洋客轮等大型建筑时,这种微小缺陷才会真正重要,而对于剑、盔甲和锅碗瓢盆等小型钢铁产品,亚历山大计划暂时制造的东西,可以忽略不计。
因此,亚历山大决定不为此失眠。
“哦,我们终于可以看到最终产品了,”梅内斯不耐烦地喊道,因为1行人已经等了1个多小时才看到这1点,从等待高炉被敲击,到最后贝塞默工艺完成。
梅内斯1指出这1点,首先用与高炉相同的工艺打开顶部的出渣孔,将所有废物放到1个大钢包中,然后打开下部的攻渣孔,让钢水流出到下面的砂锭模具中。
这样的顺序是必要的,因为与高炉不同,贝瑟转炉并非1直保持满载,并且由于转炉必须排出所有产品,如果以另1种方式完成,炉渣会混合钢,基本上使整个过程变得毫无意义。
这也是为什么亚历山大设计了有点倾斜的大炉子,有点像比萨的斜塔,这样铁水或炉渣就会作为剩菜留在那里。
1旦钢冷却1点,这些模具就会被打破,连接钢锭的小钢条用凿子切开,装上马车,然后运到车间制成各种武器、盔甲和工具。